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Executive Summary

This document summarises the progress made in Work Package 3 on hardware
virtualisation during the 4th and final reporting period of the Advance project.

In the earlier project phases the notion of hardware virtualisation was concre-
tised as a dynamic execution and resource management platform for S-Net stream-
ing networks of asynchronous components and has been implemented and evalu-
ated on a variety of hardware platforms. Progress during the 4th reporting period
has primarily been made in three directions:

(a) based on our experience made in and reported after the 3rd reporting period
we used period 4 to refine our view on hardware virtualisation and designed,
implemented and evaluated the novel FRONT runtime system for S-Net.

(b) we designed and implemented the resource management server as demanded
by work package 3d for shared memory nodes;

(c) we designed and mostly implemented fully autonomous resource manage-
ment for (scalable) multi-node systems.

This concludes our work on hardware virtualisation in the context of the ADVANCE

project.
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Chapter 1

Introduction

1.1 Overview and Context

Figure 1.1 contextualises Work Package 3 within the ADVANCE project. Core to
the work package is the design, implementation and evaluation of the SVP System
Virtualisation Platform. During the first two years of the Advance project SVP
has been concretised to a dynamic execution and resource management platform
for S-Net [8] streaming networks of asynchronous components, where components
are implemented either in plain C or (preferably) in the functional array language
SAC [9].

! !

Figure 1.1: Positioning of hardware virtualisation in the context of ADVANCE

SVP is the mediator between S-Net streaming networks, box implementations
(in C or SAC [9] and the concrete hardware they are supposed to run on. S-Net
exposes concurrency and dependencies of computational tasks, but is inherently
resource-agnostic and resource-unaware. The system virtualisation platform SVP,
in contrast, is aware of the computational resources at hand (compute nodes, pro-
cessors, cores, hardware threads, memories) and maps S-Net tasks to concrete exe-
cution units in an efficient way. Furthermore, it continuously monitors the dynamic
behaviour of the streaming network and reports the corresponding information to
the upper layers of the Advance technology stack, namely static analysis (WP 4)
and compilation methods (WP 5) for refinement of an application’s implementa-
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tion. SVP likewise interfaces with external runtime resource management (WP 6),
which makes advanced mapping decisions based on the monitoring data. These
decisions are communicated back to SVP, which dynamically implements them by
adjusting the task-to-resource mapping accordingly.

1.2 Advance Technology Stack

Fig. 1.2 illustrates the Advance technology stack from a more technical perspec-
tive. Going from top to bottom, the S-Net compiler takes an S-Net coordination
program and compiles it to the S-Net Common Runtime Interface (CRI). This is a
well-defined interface that exposes the structure of an S-Net streaming network as
an application-specific call tree of application-agnostic library functions instanti-
ated with application-specific data structures. The library functions of the common
runtime interface can be (and have been) instantiated with alternative implementa-
tions and thus allow for entirely different technical realisations of S-Net streaming
networks.

SVP hardware virtualisation platform

S−Net runtime system

Compute Node

Hardware threads
Cores

Memory

Compute Node

Hardware threads
Cores
Processors

Memory

Processors

Task management

Stream management

Data management

Placement

Monitoring

Object
code

implements calls

S−Net common

runtime interface

S−Net
compiler compiler

Component

component

source code

SAC / C

coordination

source code

S−Net 

Figure 1.2: Advance technology stack

For the Advance project only one implementation is relevant, which we refer
to as the S-Net runtime system for simplicity. This runtime system [7] follows
an approach similar to communicating sequential processes (CSP). Each S-Net
component, including a number of internal components for splitting and merging
streams, is instantiated as such a sequential process. Internally, an S-Net compo-
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nent executes an event loop that reads a record from the input stream (potentially
blocking on an empty stream) and processes that record, depending on the kind of
component and the record data. In the case of S-Net boxes this usually involves
calling an external function implemented in a component language and compiled
to binary code by the corresponding component compiler.

This may trigger the dynamic instantiation of further streaming network parts
(due to dynamic serial and parallel replication) and usually results in one or more
records to be sent to the output stream(s). To this end, component execution may
block on a full output stream1. The process continues until a special input record
signals the component to terminate. This can be due to global network shutdown
or due to partial network garbage collection [4].

The S-Net runtime system, as described above, is resource-agnostic. The im-
plementation of S-Net tasks and streams and their mapping to a constraint set of
resources is the function of the system virtualisation layer. As a part of SVP we
use the Light-weight Parallel Execution Layer (LPEL) [17] to implement the above
S-Net components and the streams via which they communicate. LPEL maps the
S-Net components to a given fixed number of kernel worker threads for shared
memory execution platforms and organises their orderly interaction.

1.3 Advances in System Virtualisation

During the 3rd reporting period we encountered unexpected anomalies in the ex-
ecution of S-Net programs on shared memory hardware using our hardware vir-
tualisation approach. These anomalies were reported and intensively discussed in
deliverable D24 as well as in [13]. In essence these anomalies can be characterised
as states of program execution where not all available hardware resources are effec-
tively utilised by S-Net, despite the availability of work in the system in principle,
because this work is blocked in front of busy component executing a long-running
box instantiation. Our work on active process migration, also reported in deliver-
able D24 as well as in [18], can be seem as an attempt to rectify these shortcomings,
but the results were not convincing.

We further analysed the situation by making intensive use of the LPEL moni-
toring facilities [15]. The outcome of these investigations were the insight that the
thorough separation between the S-Net runtime system on the one hand and the
LPEL system virtualisation layer on the other hand may be useful from a software
engineering perspective but proves counterproductive from the perspective of or-
der system behaviour and effective resource utilisation. A this point we made the
strategic decision to not cover this observation up and to further attempt to work on
symptoms or tweak the existing implementations Instead we gave it a try to design,
implement and evaluate a novel runtime system for S-Net with integrated hardware
virtualisation.

1Streams are bounded to create back pressure and thus make sure that the S-Net streaming net-
work as a whole makes progress and produces output.
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Figure 1.3: Refined ADVANCE technology stack with FRONT runtime system

We coined this new runtime system FRONT; Fig. 1.3 illustrates the refined
ADVANCE technology stack. In Chapter 2 we provide a detailed description and
some evaluation of FRONT.

1.4 Resource Management Servers

The main theme of task WP3d, our original goal for the 4th reporting period are
resource management servers. These are characterised as system services that dy-
namically allocate execution resources to executing programs, more precisely to
S-Net streaming networks with sequential or data-parallel components. A particu-
lar motivation for this active form of resource management is to control the energy
consumption of a running application. In a more general context we aim for adapt-
ing the amount of used resources to the actual dynamic needs of the application in
order to optimise resource utilisation in multi-user and/or multi-application scenar-
ios.

Following the positive evaluation of the FRONT runtime and system virtualisa-
tion system we decided to implement resource management servers in the context
of FRONT, rather than the original S-Net runtime system and the separate LPEL
system virtualisation layer. As a consequence of this work, FRONT can either be
used with a fixed set of resources (processors, cores, hyper-threads) and then makes
the best possible use of these resources, or resources can actively be managed by
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a FRONT resource management server. In the latter case resources are not used
in a greedy fashion, but the amount of active computing resources is continuously
adapted to the effective level of concurrency exposed by the running S-Net stream-
ing network. In this way, we expect to indirectly control (and reduce) the energy
consumption of a system, assuming that the underlying operating system auto-
matically reduces the clock frequency and potentially the voltage of underutilised
processors and cores.

Chapter 3 provides more on our notion of resource management servers.

1.5 Virtualisation of Scalable Systems

An issue carried over from the third reporting period was the completion of hard-
ware virtualisation for multi-node system architectures with distributed memory,
so-called scalable systems. Given the observed issues with hardware virtualisation
on shared memory systems, we temporarily reduced our efforts towards more chal-
lenging system architectures. With those issues being resolved we again turned out
efforts into this direction, but with very limited resources of time and engineering.

While we still, as originally planned, base our efforts on our experience with
Distributed S-Net [5], it is clear from the beginning that a system virtualisation
approach requires design decisions to be taken differently. In Distributed S-Net the
programmer explicitly specifies which subnetworks are instantiated on which node.
The programmer is, thus, fully responsible for effective workload distribution and
resource utilisation and Distributed S-Net merely provides the (high-level) tools to
do so.

For the full virtualisation of a scalable system we need a different approach.
While at least in principle it may be possible to retrieve suitable streaming network
annotations in the style of Distributed S-Net by means of static analysis. However,
in the presence of very limited resources being left for pursuing any approach in
this direction we decided for a fully dynamic computation offloading model that
works on the level of individual box instantiations and thus widely ignores the
potentially complex network structure around the boxes. In this model the primary
compute node executes the S-Net streaming network while all other compute nodes
act as remote compute servers that take responsibility for individual computations
but not for running the streaming network itself. A cache-only memory architecture
that aims at reducing communication requirements complements the picture.

Our approach to extend hardware virtualisation to scalable systems with dis-
tributed memory architectures in general and resource management servers in par-
ticular is detailed in Chapter 4.
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Chapter 2

Advances in System
Virtualisation

The design of the novel FRONT runtime system is based on an extensive body of
experience with the original S-Net runtime system and the LPEL threading layer.
S-RTS was mainly intended as a proof-of-concept for macro dataflow computing in
the style of S-Net. The design of LPEL as an underlying system virtualisation layer
at the beginning of the ADVANCE project was influenced by the immediate need to
provide meaningful profiling data of S-Net streaming networks to our partners for
statistical analysis.

The development of the combined S-Net runtime system and system virtuali-
sation layer FRONT is motivated by our wish to achieve high system utilisation and
generally good performance in comparison with alternative parallel programming
approaches, for now on (large-scale) closely-coupled servers with hardware shared
memory. In the sequel we discuss the major design choices in the FRONT system.

2.1 Entity Graph vs Property Graph

Due to the presence of serial and parallel replication combinators in S-Net, the
graph of communicating sequential processes is continuously evolving. It grows
due to the demand-driven re-instantiation of argument networks, and it shrinks due
to network garbage collection under certain circumstances [4]. Any change in the
graph must be attributed to overhead that competes for resources with productive
box computations. In many situations, evolving the network graph additionally
reduces the effectively exploitable concurrency. One of the key design ideas behind
the FRONT runtime system is, thus, to replace the dynamically evolving graph
of communicating sequential processes by two complementary graphs: the static
property graph and the dynamically evolving entity graph.

We illustrate our first design choice by means of the simple, yet non-trivial
example S-Net coordination program shown in Fig. 2.1. The example application
implements a dynamic graphics filter pipeline; a graphical illustration of the same
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program is sketched out in Fig. 2.2.

net Example ({Img} -> {Img})
{

box Pre ( (Img) -> (R,G,B) );
box fR ( (R) -> (R) );
box fG ( (G) -> (G) );
box fB ( (B) -> (B) );
box Test ( (R,G,B) -> (R,G,B) | (R,G,B,<done>) );
box Post ( (R,G,B,<done>) -> (Img) );

net Split
connect [{R,G,B} -> {R} ; {G} ; {B}];

net Sync
connect [|{R},{G},{B}|] * {R,G,B};

net Pipe
connect (Split .. (fR | fG | fB) .. Sync .. Test) *

(cont.){<done>};

} connect Pre .. Pipe .. Post;

Figure 2.1: Example S-Net implementing a dynamic graphics filter pipeline

The top-level pipeline consists of a preprocessing step (Pre) transforming an
abstract image into its red, green and blue colour components, a dynamic filter
pipeline (Pipe) and a postprocessing step (Post) that turns processed RGB image
components back into the original image representation.

Split fG

fR

fB

[||]*{R,G,B} Test

*{<done>}

PostPre

Figure 2.2: Illustration of the S-Net streaming network defined in Fig. 2.1

The dynamically replicated filter pipeline, implemented with a star-combinator
in Fig. 2.1 and shown in the central compound box in Fig. 2.2, consists of a splitter
that divides an RGB-image (record) into three independent records carrying on the
red, green and blue colour information, respectively. These records are routed to
three custom filters by means of parallel composition. After the individual process-
ing of colour components, separate red, green and blue records are captured and
combined into a single record in the subsequent synchro-cell.
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Since we assume a stream of images to be processed by our filter (pipeline) and
a synchro-cell only synchronizes a single set of incoming records (see above), we
embed the synchro-cell in another serial replication combinator. Consequently, the
Sync network synchronizes and combines the first red value with the first green
and the first blue value on the inbound stream, the second red with the second
green and blue value, and so on. On the combined RGB-image we run a simple
test whether to continue filtering or to output the image. The decision is signalled
by the presence or absence of the tag <done>, which is inspected by the star
combinator and later removed in the postprocessing step.

At program startup execution of the compiler-generated function call graph
(the common runtime interface, see Section 1.2) creates the static property graph.
In Fig. 2.3 we show the property graph for our running example. It merely con-
tains placeholders for the replication combinators. The property graph contains all
information required for running the network, e.g. types for routing decisions, and
serves as a template for evolving the entity graph.

Pre DispA

Split DispB CollB

fB

fG

fR

DispC

Cell

CollC Test

CollA Post

Figure 2.3: The static entity graph of the running example introduced in Fig. 2.1

The entity graph is created strictly demand-driven. Initially, FRONT creates
just the first entity, in our example this is Pre. Even the creation of the outgoing
stream is postponed. The first record to leave Pre will detect the absence of an
outgoing stream. The Pre entity structure contains a pointer to the Pre node in the
static node graph of Fig. 2.3. This suffices to give the outgoing edge, which in turn
gives the destination node. From the destination node the entity type is available
(in this case a star dispatcher) together with application-specific type parameters
(e.g. the termination pattern is <done>).

In this case the destination is a dispatcher for a star combinator: DispA1 . This
requires special handling, because it has two outgoing connections which ulti-
mately both need to end up at the same collector CollA. In order to be able to
only allocate a stream when it is first needed to output a record, but still guarantee
that all incoming streams to a collector use the same destination entity, each entity
carries with it a stack of pointers to future collectors. When DispA1 is created,
the collector CollA is created as well and pushed onto the stack. Each new entity
receives a copy of the stack from its predecessor. When the streams layer detects
(according to the static property graph) that it is opening a stream to a collector,
then it will take the collector from the top of the stack.
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Why is it not possible to do with only a static component graph at runtime? The
answer is simple: while boxes are stateless by design, whole networks may indeed
be stateful as they may contain synchro-cells. At a synchro-cell it is important to
match the right records according to the semantics of S-Net, which is based on
actual replication.

2.2 Process-centric vs Data-centric View

The process-centric view characteristic for S-RTS implementing each entity by a
dedicated thread of control, even if implemented as a logical, cooperative thread in
LPEL, turned out to be expensive. Thus we aim at a radical change in the inter-
pretation of streaming networks and abandon the process-oriented design. Instead,
we create a fixed set of worker threads to be run on different cores at applica-
tion startup. These workers roam the entity graph in search for work. When a
worker finds an entity with a non-empty input stream, it locks the entity using a
compare-and-swap (CAS) instruction while it processes that entity. One serious
consequence of this design is that a thread can no longer block when the entity
writes to an already full stream buffer. As the semantics of S-Net does not bound
the number of records a box may emit, streams connecting entities must be un-
bounded, as well.

The question remains how workers find entities with non-empty input streams.
Effectively roaming the entity graph would clearly be inefficient. In particular, col-
lector entities would have to keep track of incoming streams and those have to be
examined for non-emptiness. For several reasons, workers cannot just examine the
network of entities and test for non-empty incoming streams. Keeping track of en-
tities with work is also inefficient, because then collector entities have to keep track
of incoming streams and those have to be examined for non-emptiness. Therefore,
the unit of work scheduling in FRONT is the non-empty stream itself. Whenever a
worker writes to a stream, it remembers this as a license to read one record from
that stream for a future invocation at the destination entity. It stores this knowl-
edge in a stream reference structure, which contains a pointer to the corresponding
stream and a counter for the number of read-licenses it has for that stream. When
new read-licenses arrive, the worker looks up the stream reference structure in a
hash table which is indexed by a pointer to the stream. To exercise a read-license,
the worker first attempts to lock the destination entity. If this succeeds, it decre-
ments the number of read-licenses by one, reads one record from the stream and
then invokes the entity. If this was the last read-license, it destroys the stream
reference structure and its hash table entry.

Fig. 2.4 illustrates the most relevant aspects of the FRONT runtime system. On
the top part we see an entity graph with boxes E, F and G interconnected by streams
S holding four records, T holding three records and the currently empty stream U.
On the bottom part we see four worker threads that, for example, virtualise the
four cores of a quad-core processor. The number of records in the various streams

12



E R R R R F R R R G

Stream S Stream T Stream U

Worker 1 T, 2 S, 1

Worker 2 T, 1 S, 2

Worker 3 S, 1

Worker 4

Figure 2.4: Illustration of workers, streams and read licenses

equals the number of read licenses to these streams spread over the four workers’
task queues. It is important to note that beyond this numerical equivalence there is
no concrete a-priori association between workers and concrete records.

In a potential scenario Worker 1 exercises one of its read licenses on stream T
after successfully locking that stream, i.e. it retrieves the first record from stream
T and runs box G on it. Worker 2 also has a read license on stream T, but stream T
is already locked by worker 1. Therefore, worker 2 traverses its work queue, finds
a read license to stream S, which it successfully locks, and runs box F on the first
record from stream S. Worker 3 has a read license for stream S, but stream S is
already locked by worker 2. Hence, there is currently no work to do for worker 3,
but as soon as worker 2 releases the lock on stream S, worker 3 could become
active. Worker 4 has no read licenses whatsoever and thus no work to do in the
scenario of Fig. 2.4.

Two aspects are remarkable in our example and require our attention. With
every record produced by running box G and box F worker 1 and worker 2, re-
spectively, add new read licenses to streams S and T to their local work queues.
Obviously, a worker cannot produce read licenses out of nothing, e.g. worker 4 in
Fig. 2.4 would always stick to an empty work queue. To properly distribute work
among a number of workers we need the additional concept of work stealing. We
elaborate on work stealing as well as on how to receive records into the running
stream processing system in the first place in Section 2.5.

The other interesting aspect is that in the given example we can only keep
two out of the four workers busy at any time. In fact, the level of concurrency
in the given example is only 2 as long as we assume standard stream processing.
However, given the many more records in the example scenario, it seems we do not
fully exploit the concurrency potential. To overcome such limitations we introduce
concurrent box invocations in Section 2.6.
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2.3 Execution Order

The way workers organize their collection of stream references determines the or-
der in which they are processed. An entity graph can be regarded as a dynamic
pipeline with parallel branches, which evolves from an input entity to an output
entity. The edges in this graph are the streams which transport the records. In this
picture we wish to preferably schedule those non-empty streams, which have the
highest probability of quickly producing output. Each output record reduces the
memory footprint and also provides the user with results. Another important mo-
tivation is to keep the number of non-empty streams as high as possible in order to
increase the concurrency which is exposed to all workers. This is best achieved by
elongating and widening the entity graph as much as possible.

FRONT stores stream references in a singly linked list per worker; the tail of
the list is closer to the input entity and the head closer to the output entity. When a
worker searches for a schedulable stream, it traverses this list from the head looking
for a stream with a currently unused destination entity. When found, the worker
locks the destination entity of the stream, reads one record from the stream and
invokes the entity. If the invocation generates new output records which result in
a new stream reference structure then these are inserted before the current position
in the list. As a consequence, streams closer to the output entity are closer to the
head of the list and, therefore, are prioritised.

2.4 Improved Data Locality

We further aim at avoiding the migration of records from core to core to improve
data locality in the ubiquitous presence of hierarchical caches. We extend write
operations to streams with a flag that identifies the last output record of some entity
invocation. In this case the worker thread immediately continues with the follow-
up entity and the current record, i.e. it follows the record through the entity graph.
This data-centric (instead of entity-centric) solution has the added benefit that we
save storing and retrieving read-licenses.

R R R

Stream T

G

Stream U

H

Stream V

I

Worker 1 T, 2

Figure 2.5: Illustration of continued record processing

We illustrate our approach with a simple example shown in Fig. 2.5. Here, we
see boxes G, H and I, connected by streams T, U and V. A worker has two read
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licenses for stream T, which contains a total of 3 records. The worker exercises its
first read license on stream T, retrieves the first record in the queue and executes
box G on that record. Let us assume that all our boxes in the example are stream
transformers that map one input record to one output record, a simple but very
common case in stream programming. When box G completes and issues a record
marked as described above, the worker does not put the record into stream U, but
provided that stream U is empty, immediately continues processing box H with
the given record. To do so the worker locks the entity H and at the same time
releases the lock on entity G. This allows other workers (omitted in Fig. 2.5) to
steal read licenses on stream T from worker 1, but read more on work stealing in
the following section.

2.5 Input Control and Work Stealing

When the list of stream reference structures is empty a worker tries to obtain ex-
clusive access to the input entity in order to retrieve records from the input parser.
This strategy replaces the concept of back pressure through bounded streams in
S-RTS to avoid overloading a streaming network with too many incoming records.
Instead, new work is only admitted to the streaming network if workers are still
idle.

If there is neither input on the global input stream or another worker has already
locked the input entity, idle workers turn into thieve mode and examine the list
of stream references of other workers. We store pointers to workers in a global
array. Thieves iterate over this array when searching for work. They remember
the previously visited victim and continue with the next worker (round-robin). To
reduce contention with victims over their stream reference lists at most one thief at
a time may visit a victim.

For the same three motivations given previously thieves preferable steal read-
licenses for schedulable streams which are likely closest to the output. When they
find a stream with a lockable entity, they steal half of the number of read-licenses
from the victim’s stream reference structure. Then they retract from the victim’s
list and continue with invoking the destination entity for the stolen stream read-
licenses. Victims and thieves must exclusively lock a stream reference structure
with a CAS (compare-and-swap) instruction before dereferencing a stream pointer
or modifying its contents.

It is noteworthy that our variant of work stealing deviates from the standard
approach found in most implementations elsewhere. Normally, work lists are dou-
bly linked, and the owner reads from one end while the thieves read from the other
end. This model avoids access conflicts between owners (or victims) and thieves as
long as there is more than one work item in the list. In the FRONT runtime system
we make use of a single-linked list and both victims and thieves read from the head
of the work list. This is necessary to ensure that the S-Net network as a whole
makes progress towards producing completed records at the global output. In other
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words, even in the presence of work stealing the FRONT runtime systems aims at
computing tasks at the “front” of the streaming network.

Where a worker looks first for more work when its own work list becomes
empty is an important design decision. We choose workers to first check global
input for more work before trying to steal work from other workers. This choice
reduces the overhead created by many workers simultaneously aiming at stealing
work that simply does not exist. Moreover, it helps to accelerate the initial ramp
up phase of any S-Net network when the number of records in the system is still
small and effectively no work exists that could be stolen. As only one worker
at a time can lock and thus operate the input entity, new records may enter the
streaming network while at the same time other workers aim at stealing work from
their peers.

2.6 Concurrent Box Invocation

The S-Net language specifies box functions to be stateless. We can exploit this
property to significantly increase concurrency by allowing multiple workers to in-
voke a box entity concurrently as soon as multiple input records are waiting in the
input stream. For the purpose of experimentation, a per-box concurrency limit can
be specified for now. As illustrated in Fig. 2.6, we allocate for a box entity an
equivalent number of box contexts. Each box context has its dedicated outgoing
stream, which ends at a shared per-box collector. The collector merges the incom-
ing streams into one outgoing stream. When a worker invokes a box, it finds an
unused box context, locks it and if the number of concurrent invocations is below
the limit, it immediately unlocks the box entity, to allow for more concurrent invo-
cations by other workers. The collector entity ensures that despite concurrent box
invocations the stream order semantics of S-Net are preserved, i.e. records cannot
coincidentally overtake other records.

collector

context
context
context
context

box
input output

Figure 2.6: Illustration of concurrent box invocations

The ability of the FRONT runtime system to invoke the same box instance mul-
tiple times concurrently if multiple input records are waiting to be processed is an
important step to fully exploit the concurrency contained in an S-Net specification.
Following the macro data flow approach the unit of computation in S-Net is the
record, not the box component. Conversely, in a communicating sequential pro-
cess implementation model, as the original S-Net runtime system does, opportuni-
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ties for concurrent computations are regularly left out whenever multiple records
start queuing in the input stream of a busy box component.

We demonstrate the effectiveness of concurrent box invocations for perfor-
mance and scalability by means of the S-Net MTI-STAP application. MTI-STAP
is a signal processing application: Moving Target Indication using Space Time
Adaptive Processing [12, 16]; it detects slow moving objects on the ground using
an airborne radar antenna. We evaluate the performance of this application to see
if concurrent box invocations in the runtime system can improve performance for
existing S-Net applications.
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Figure 2.7: MTI-STAP: (a) Execution time, (b) Speedup for Concurrent Box Invo-
cations.

Fig. 2.7a shows execution times for S-RTS/PTH, S-RTS/LPEL and FRONT.
Here FRONT runs with the box concurrency limit set to numbers between 1 and 9
as indicated by the suffix: The label FRONT-1 denotes the default configuration,
i.e. no concurrent box invocations, while FRONT-9 denotes the configuration when
up to nine workers may invoke a single box landing concurrently. Fig. 2.7b shows
the speedup for increasing box concurrency limits relative to the execution time
of S-RTS/PTH. This more clearly shows the performance gains by the concurrent
box invocations. Of course performance gains by concurrent box invocations are
highly application specific. Our implementation merely provides a mechanism for
users to increase the exposed concurrency in their applications.

2.7 Optimizing Repeated Synchronization

Another significant optimization is the recognition of the very common combina-
tion of a synchro-cell as operand to a star combinator. By replacing this combina-
tion with a single entity we quite drastically reduce the required number of memory
allocations and deallocations for streams of records which need to be synchronized.
The concentration of information in a single entity further allows us to reduce the
worst case cost for a single synchronization from O(N) to O(1) when the input
stream has strong imbalances in the order of arrival of the types of input records.
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2.8 Non-deterministic Feedback

Currently the S-RTS runtime system only provides a deterministic implementation
of the feedback combinator where a new record is input into the feedback loop only
when all previous record processing activity in the loop has come to an end. In the
FRONT runtime system we also provide a non-deterministic feedback combinator
which liberally accepts further input records into the feedback loop. This allows for
the expression in S-Net of various useful design patterns, such as for flow control
and load balancing. It also increases the exposed concurrency and significantly
improves performance in some cases.

2.9 Experimental Evaluation

We evaluate FRONT by comparing its performance with that achieved by S-RTS for
a variety of applications. More precisely, we compare the following S-Net runtime
system configurations:

• S-RTS/PTH: the original runtime system with the PTHREADS threading
layer,

• S-RTS/LPEL: the original runtime system with the LPEL threading layer,

• FRONT: the novel runtime system introduced in this paper.

Our experimental system is a 48-core SMP machine with 4 AMD Opteron 6172
“Magny-Cours” processors running at 2.1 GHz and 128 GB of DRAM. Each pro-
cessor core has 64 KB of L1 cache for instructions, 64 KB of L1 cache for data,
and 512 KB of L2 cache. Each group of 6 cores shares one L3 cache of 6 MB. The
system runs Linux kernel 2.6.18 with Glibc 2.5. We used GCC version 4.4.6 with
the -O3 optimization option to compile all C sources.

We first focus on a fairly small benchmark that deliberately stress tests the
runtime system design and implementation through large numbers of records, fre-
quent expansion of dynamically replicated subnetworks and negligible computa-
tions within components. At the end of the section we present our findings for
a non-trivial (and more representative) S-Net application. A plethora of further
experimental data can be found in [2, 3].

2.9.1 Fibonacci Numbers

With the Fibonacci benchmark1 we compare the performance of the runtime sys-
tems in creating and destroying entities and streams as well as the speed at which
records are pushed through the entity graph. We do all computing with S-Net

1Available at https://github.com/snetdev/snet-rts/blob/master/
examples/fibonacci/fibonacci3.snet
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filters and minimize the influence of input parsing and output formatting by tak-
ing only one input record and producing a single output result, i.e. the argument
and result of the Fibonacci function. Our implementation follows a divide-and-
conquer approach such that all S-Net language constructs are used intensively. The
number of created records is proportional to the value of the computed Fibonacci
number. Fig. 2.8a shows that FRONT is about 50 times faster than S-RTS for this
benchmark; Fig. 2.8b shows the (connected) rate at which records are created and
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Figure 2.8: Fibonacci benchmark: (a) Execution time, (b) Record processing rate

destroyed. For FRONT this rate increases strongly up to Fib(12) after which it
increases weakly, whereas for S-RTS it diminishes between Fib(11) and Fib(15),
regardless of the threading layer.

2.9.2 Cholesky Decomposition

Cholesky decomposition is a linear algebra problem: given a Hermitian positive-
definite matrix A, find a lower triangular matrix L, such that LLT = A, where LT

is the transpose of L. We use an implementation by Pāvels Zaičenkovs, University
of Hertfordshire, based on the tiled algorithm proposed by Buttari et al [1]. After
an initial setup the algorithm repeatedly executes the following seven phases: fan-
out, data-parallel computations, fan-in, fan-out, data-parallel computations, fan-in,
and sequential consolidation of intermediate results.

We use this application to measure scalability. We stepwise increase the num-
ber of processor cores which are available to the runtime system. For this we use
the taskset program, which permits detailed control of processor core affinity.
We incrementally add cores such that they share L3 caches and are part of the same
processors and sockets as much as possible. At each measurement step we config-
ure FRONT and S-RTS/LPEL to use a number of worker threads which is equal
to the available number of processor cores.

Fig. 2.9a shows measurements 4096 by 4096 double precision floating point
matrices using 64 by 64 tiles. This amounts to 32 KB per tile. Hence, two tiles fit
into the L1 cache of 64 KB. The FRONT runtime system shows good speedups for
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Figure 2.9: Speedup on Cholesky decomposition for two parameter sets: (a) Matrix
size: 4096 by 4096, tile size: 64 by 64. (b) Matrix size: 8192 by 8192, tile size:
128 by 128.

6 cores and diminishing speedups up to 24 cores. The S-RTS runtime shows just
minor speedups up to 6 cores and no speedups beyond. Our interpretation of this
figure is that the cost to communicate a task to a different core is relatively high
compared to the effort required to complete the task. S-RTS suffers from the high
overhead to construct threads to execute a task, which involves longer sections of
serial code and context switches between different threads of execution. In FRONT

no new threads need to be created to execute a new task. The construction of
entities which facilitate the concurrent execution of a new task only requires some
memory allocation, which therefore is much cheaper. Distribution of a task does
not require context switches, but at most one work stealing event. In Fig. 2.9b
we increase the amount of data per tile by four while keeping the total number
of tiles identical. Hence, the number of S-Net entities remains the same as well;
only the time spent in box components increases. Now, S-RTS/PTH also shows
reasonable speedups, but less so S-RTS/LPEL. FRONT shows excellent speedup
even for 48 cores. Increasing the number of cores from 36 to 48 still improves
the performance by 21 percent, which we deem satisfactory considering that the
algorithm also contains sequential sections.

2.10 Monitoring

Runtime monitoring is one of the strengths of the LPEL system virtualisation
layer [15]. It would be very desirable to combine the FRONT system with these
monitoring capabilities in order to analyse the dynamic behaviour of FRONT with
the same level of accuracy and scrutiny as we did with the combination of the orig-
inal S-Net runtime system and LPEL. Unfortunately, we have not had the resources
to address this issue within the limits of the ADVANCE project, although we would
not expect any issues in doing so beyond the mere engineering effort.
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Chapter 3

Resource Management Server:
Single Node

The major contribution of task WP3d, which is to be reported on in this deliver-
able, are resource management servers. These are characterised as system services
that dynamically allocate execution resources to executing programs, more pre-
cisely to S-Net streaming networks with sequential or data-parallel components. A
particular motivation for this active form of resource management is to control the
energy consumption of a running application. In a more general context we aim for
adapting the amount of used resources to the actual dynamic needs of the applica-
tion in order to optimise resource utilisation in multi-user and/or multi-application
scenarios.

3.1 Approach

Our approach for a single compute node resource server is illustrated by Fig. 3.1.
Whereas our initial approaches to hardware virtualisation, both based on LPEL
and an FRONT, work with a configurable but otherwise constant number of worker
threads, we now relax this restriction and make the number of worker threads vari-
able over the entire program runtime. A dedicated resource server (thread) is re-
sponsible for dynamically spawning and terminating worker threads as well as for
binding worker threads to execution resources like processor cores, hyperthreads
or hardware thread contexts, depending on the architecture being used.

Upon program startup only the resource server thread is active; this is the mas-
ter thread of the process. The resource server thread identifies the hardware ar-
chitecture the process is running on by means of the hwloc utility. Optionally, the
number of cores or hardware threads to be effectively used can be restricted by
the user; this is primarily meant as a means for experimentation, not for produc-
tion use. Next, the resource server sets up the static property graph, which is to
be shared by all worker threads. Once the set up is completed, the resource server
launches the first worker thread.
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Figure 3.1: Resource server architecture for single node systems

The worker thread executes its standard work stealing procedure. In the pres-
ence of an obviously empty work queue it reads the global input stream and, thus,
creates the first record in the system. This record is then being processed as de-
scribed in Chapter 2, which normally triggers the creation of further records to be
put into the local work queue.

Creation (and termination) of worker threads is controlled by the resource
server making use of two counters, or better resource level indicators. The first
one is the obvious number of currently active worker threads. This is initially zero.
The second resource level indicator is a measure of demand for compute power.
This reflects the number of work queues in the systems. This is not the same as
the number of threads because we have a very special further work queue not as-
sociated with any of the workers: the global input of the S-Net streaming network.
Thus, the demand indicator is initially set to one. Both resource level indicators
are restricted to the range between zero and the total number of hardware execu-
tion resources found in the system.

If the demand for computing resources is greater than the number of workers
(i.e. the number of currently employed computing resources), the resource server
spawns an additional worker thread. Initially, this condition holds trivially. The
creation of an additional worker thread temporarily brings the (numerical) demand
for resources into an equilibrium with the number of actively used resources. Be-
fore increasing the demand the new worker thread must actually find some work to
do. In particular during the startup phase of an S-Net streaming network, this usu-
ally happens by reading another record from the global input stream. In general,
the new thread could alternatively steal existing work from other threads. In any
case, once doing productive work, the worker signals this to the resource server,
and the resource server increments the demand level indicator, unless demand (and
hence resource use) has already reached the maximum for the given architecture.

This procedure guarantees a smooth and quick organisation of the ramp up
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phase. As a standard scenario we assume the availability of considerable input data
on the global input stream as well as a non-trivial amount of initial computation on
each of the records. In this case, we effectively overlap (the overhead of) worker
thread creation with reading data from global input and its processing. Moreover,
only one worker thread at a time attempts to read the global input stream, which
avoids costly synchronisation upon accessing this device.

Executing our work stealing model, as described in the previous chapter, poten-
tially leads worker threads to states of unemployment. With the local work queue
being empty, no new records on the global input and nothing to steal from other
workers, there is nothing left to do for a worker thread. The worker signals this
state to the resource server, which in turn reduces the demand level indicator by
one. The worker thread does not immediately terminate because we would like
to avoid costly repeated termination and re-creation of worker threads in not un-
common scenarios of oscillating resource demand. The worker thread, however,
does effectively terminate with a configurable delay following an extended period
of inactivity.

3.2 Energy consumption

Effective application-level software control over energy consumption parameters
such as clock frequency and voltage is still in its infancy. While such features exist
on some architectures, e.g. Intel’s Single Chip Cloud Computer (SCC) [10, 14],
portability in the availability of features and their control are a matter of the future.

As a consequence, we decided for indirect control over energy consumption
and anticipate corresponding support in the operating system for automatic clock
frequency and potentially voltage scaling. Most commonly used architectures and
operating systems do support this today. Originally motivated by the needs of
battery-powered devices like laptops and notebooks server installations likewise
use these features nowadays to avoid wasting energy when compute power is tem-
porarily unrequested.

We make use of these facilities by creating worker threads step-wise in a demand-
driven manner and bind these threads to run on hardware resources as concentrated
as possible. For example, on a dual-processor, quad-core, twice hyperthreaded sys-
tem we would start at most 16 worker threads. While ramping up the number of
active worker threads we first fill the hyperthreads of one core, then the cores of
one processor, and only when the number of workers exceeds eight, we make use
of the second processor. This policy allows the operating system to keep the second
processor at the lowest possible clock frequency or even to keep it off completely
until we can indeed make efficient use of it.

While we only ramp up the number of worker threads on-demand as computa-
tional needs grow within the S-Net streaming network, we also reduce the number
of workers when computational needs decrease. This fits well with our work steal-
ing based runtime system organisation. If a worker runs out of private work, i.e. its

23



work queue becomes empty, it first tries to get hold of the input device and import
new records (and thus work) from the global input stream. If that fails, the worker
turns into a thief and tries to obtain work from other workers’ work queues. If that
also fails, it must be concluded that there is at least currently no useful work to
do and the worker terminates. By doing so the worker releases the corresponding
hardware resource and, thus, gives the operating system the opportunity to reduce
its energy consumption by reducing clock frequency and/or voltage or by shutting
it down entirely.

While it is fairly straightforward during worker thread creation to incrementally
invade the available hierarchical execution resources, worker thread termination as
described above is bound to result in a patchwork distribution of active workers
over hardware resources over time. This would render the energy-saving capacities
of the operating system largely ineffective. To overcome this shortcoming, the
resource server continuously monitors the allocation of worker threads to hardware
resources and rebinds the workers as needed.

3.3 Multiple Independent Applications

The next step in advancing the concept of resource management servers is to ad-
dress multiple independent and mutually unaware applications (or instances thereof)
running at overlapping intervals of time on the same set of execution resources.
Fig. 3.2 illustrates our approach with two applications. The role of the resource
management server as introduced in the previous section is split into two disjoint
parts: a local resource server per application (process) manages the worker threads
of the S-Net runtime system and adapts the number and core-binding of the work-
ers as described before.

The second part of multi-application resource management servers lies with a
separate process that we coined meta resource server. This meta resource server is
started prior to any S-Net-related application process. It is in exclusive1 control of
all hardware execution resources of the given system. Whenever a local resource
server has reason to spawn another worker thread, in the current multi-application
scenario, it first must contact the meta resource server to obtain another execution
resource. The meta server either replies with a concrete core identifier or it does
not reply at all. In the former case the local resource server of the corresponding
application spawns another worker thread and binds it to the given core. In the latter
case the local resource server simply does nothing, which means that the number
of execution resources currently occupied by this application remains unmodified.

As said before, the meta resource server is in control of all execution resources
and decides which application can make use of which cores. With a single appli-
cation (instance) the system behaves almost exactly as described in the previous
section. The local resource server, assuming that the application exposes ample

1We deliberately ignore the underlying operating system here as well as potentially running fur-
ther applications unaware of our resource management model.
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for (i = 0; i < num_clients; ++i) {
client = all[i];
if (client->local_workload >= 1) {

++num_positives;
total_load += client->local_workload;
portions[i] = 1;

} else portions[i] = 0;
remains[i] = 0.0;

}
assert(host->nprocs < total_load);
for (i = 0; i < num_clients; ++i) {

client = all[i];
if (client->local_workload >= 2) {

portions[i] += (client->local_workload - 1)

* (host->nprocs - num_positives)
/ (total_load - num_positives);

remains[i] = ((double) ((client->local_workload
(cont.)- 1)

* (host->nprocs -
(cont.)num_positives))

/ ((double) (total_load -
(cont.)num_positives)))

- (double) (portions[i] - 1);
}
num_assigned += portions[i];

}
while (num_assigned < host->nprocs) {

p = 0;
for (i = 1; i < num_clients; ++i) {

if (remains[i] > remains[p]) p = i;
}
if (remains[p] > 0) {

portions[p] += 1;
num_assigned += 1;
remains[p] = 0.0;

} else break;
}

Figure 3.3: Algorithm to divide resources between independent applications pro-
portionally to their resource demand
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concurrency, incrementally obtains all available resources on the compute node.
Only the additional inter-process communication marginally slows down this pro-
cess.

Let us look at the more interesting scenario of two applications that both expose
sufficient concurrency to make use of the entire compute server by themselves. One
is started first and obtains one core after the other until it occupies the entire system.

Now, we start the other application. To do this we must first admit that the meta
resource server as well as the local resource servers are scheduled pre-emptively
by the operating system. In other words they are not in possession of an exclusive
core. And neither are the worker threads. While we guarantee that no two worker
threads are bound to the same core at the same time, resource management servers
may well interfere with worker execution. With large numbers of cores it may
prove more suitable in the future to reserve particular cores for resource manage-
ment, but the still fairly low core counts representative today, we choose the above
solution in order to avoid wasting considerable computing resources. Our general
underlying assumption here is that time spent on any form of resource management
is negligible compared with the actual computing.

Coming back to our example, all cores are in “exclusive” use by the first ap-
plication when we start the second application. Hence, we effectively only start
the second application’s local resource server, which in turn contacts the meta re-
source server via inter-process communication to ask for a computing core. Since
the meta resource server has no such core at hand, it first needs to get one back
from another application. To determine the relative need for computing resources
the meta resource server compares two numbers for each application:

a) the number of currently allocated cores;

b) the demand for cores, i.e. how many cores the application has asked for.

The quotient between the latter and the former determines the relative need for
cores. In our running example and assuming an 8-core system, the first applica-
tion has a demand quotient of 9

8 because it currently occupies all eight cores but
asked for one more core (we assume ample internal concurrency). The second ap-
plication has a demand quotient of 1

0 which we interpret as infinitely high. Thus, a
new application that has been started but does not yet have any execution resources
has a very high relative demand. The meta resource server goes back to the first
application and withdraws one the cores previously allocated to it. The local re-
source server decides which worker thread to terminate and empties that threads
work queue, which is simply appended to another work queue. The worker thread
is not preemptively terminated but we wait until it finishes its current box com-
putation. After that the worker thread tries to retrieve the next read license from
its work queue, but finds its work queue removed. The thread, thus, signals the
local resource server its end and terminates. The local resource server immediately
communicates the availability of the corresponding core back to the meta resource
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server. The meta resource server allocated that core to the second application,
which now starts to ramp up its execution.

Assuming that the second application likewise exposes ample concurrency, it
will soon ask the meta resource server for another threads. The meta resource
server, by means of the demand quotients, step-by-step takes execution resources
away from the first application and gives them to the second application until an
equilibrium is reached. In order to avoid moving resources back and forth uselessly,
the meta resource server makes sure that moving one execution resource from one
application to another does not invert relative demands.

If the first application terminates at some point in time while the second is
still running, all vacated resources will be moved over to the second application.
Fig. 3.3 shows an excerpt of the relevant algorithm to ensure proportional resource
distribution among applications.

28



Chapter 4

System Virtualisation and
Resource Management Servers
for Multiple Nodes

One of the long-standing goals of the Advance project has been to extend hard-
ware virtualisation to clusters of workstations in a transparent yet efficient way.
In the following we describe our approach to extend the per-node resource server
described in the previous chapter to multi-node architectures with distributed mem-
ory.

4.1 Approach

The resource server approach taken for closely coupled shared memory server
nodes, as described in the previous chapter, cannot be extended to loosely cou-
pled, highly asynchronous multi-node systems. Given the strict limitations in time
and engineering capacity for this task we strive for a solution that we hoped to
be able to realise within the give budget constraints. This approach could best be
characterised as an offloading (software) architecture, where additional servers es-
sentially act as accelerators that can dynamically be added to and removed from
the resource control infrastructure.

On the primary node we essentially run a modified version of the work steal-
ing hardware virtualisation layer described in Chapters 2 and 3. This choice has
the first advantage that the global input and output streams of any S-Net stream-
ing network exclusively run on this dedicated node. Other nodes do not actually
need to be connected to input and output streams or file systems in any specific
way. In other words we do not need to make any assumptions on the input/output
capabilities of auxiliary nodes.

In our offloading model the primary node acts as a client; auxiliary nodes as
compute servers. While the S-Net streaming network itself runs on the primary
node, box invocations are regularly offloaded to compute servers, i.e. instead of
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actually calling the box implementation function, we send the record alongside an
identification of the box (function) to an auxiliary compute server. That compute
server actually executes the processing of the given record by the given box (func-
tion) and sends the resulting records back to the primary node (or client). The
client receives the resulting records and inserts them as usual into the correspond-
ing output stream of the box.

Of course, execution on the primary node does not stall during the offloading
of some computation. Otherwise, offloading would be rather useless, both in terms
of performance and energy consumption. Having offloaded the computation the
runtime system on the primary node continues execution as if the computation were
already completed. As S-Net does guarantee certain sequencing rules, offloading
creates the need for some reordering capacity to guarantee the orderly behaviour
of the streaming network. This, however, is already a solved problem, and we
can immediately reuse our solution for concurrent box invocations, as reported in
Section 2.6.

Since compute servers must be expected to be moderately parallel internally
with multiple sockets and multi-core processors, we must talk about their internal
organisation in terms of resource services. Any secondary compute server receives
compute jobs on a defined network socket. A local resource server dispatches the
jobs over the available computing resources. In doing so, it takes into account
both load balancing and energy saving concerns, and different policies could be
employed that would expose different dynamic behaviour. If energy consumption
is a concern, then we use a similar incremental resource utilisation strategy as
described in Section 3.2.

Fig. 4.1 illustrates our architecture for distributed system virtualisation and dis-
tributed resource management servers.

An important aspect in this design is the management of data. When we said
before that records are communicated from the primary node (or client) to one of
the compute servers and the records resulting from the corresponding computation
are communicated back to the primary node, then we meant records without the
corresponding field data. Instead of the actual data referred to by some record,
we merely communicate handles to that data. Such a handle consists of the unique
node identifier that holds the actual data and the data’s address on that node. Before
any compute server starts any computation, it first ensures that the data referred to
by the record is properly materialised in local node memory. In other words, the
data is fetched on demand from the node that owns it. Similarly, data that is created
during a computation on one of the compute servers remains where it is, and only
the record with handles to that data is effectively communicated back to the primary
node. This scheme results in the distributed memories of a collection of compute
servers as well as the memory of the primary node to be operated in a form of
software cache-only memory architecture. We adopted the general approach from
Distributed S-Net [6] and adapted it for our specific needs in the current context.

The cache-only memory architecture creates an avenue towards locality-aware
scheduling of computations. A crucial question that we haven’t even touched yet
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is where to offload some computation in the presence of multiple compute servers.
In our first approach compute servers inform the primary node’s resource manager
in certain regular intervals about their load levels. The resource manager in turn
aims at a reasonably even workload distribution. Locality-awareness in this con-
text means that the resource server could take into account where the data of the
record to be sent off for computing currently is situated. It appears plausible to give
some preference to the compute node that already holds significant parts of the rel-
evant data in order to reduce communication requirements. This scenario demands
further research into heuristics that find reasonable trade-offs between workload
distribution and data locality. Due to limitations in time and resources we have not
been able to investigate this direction further.

Our approach opens up another avenue for future research: the combination
of the S-Net streaming network technology with data-parallel implementations of
boxes, predominantly using SAC. So far, the combination of streaming or data
flow style parallelism on the network level with (implicit) data parallelism within
individual boxes has suffered from two limitations. Firstly, closely coupled cache-
coherent shared memory architectures typically expose only a limited number of
concurrent computing resources. In practice, these can typically be utilised in their
entirety by either the data flow streaming network level or by only data parallel
(non-streaming) implementations. Combining both approaches in this case rather
adds technical complexity and, obviously, additional overhead, but cannot gener-
ally achieve higher levels of performance. Secondly, the data parallel approach
with its inevitable synchronisation barrier at the end requires hardware virtualised
computing resources to be available at roughly the same time, which conflicts with
the overall streaming model that leads to a rather irregular and independent re-
source utilisation. With the multi-node offloading approach above we can employ
the local resource servers to manage groups of cores and assign them to individual
box executions.

4.2 Communication Protocol

In this section we provide the complete protocol for the client-server communica-
tion with more details.

4.2.1 Messages from clients to servers

Clients can issue the following message types (here enclosed in double quotes)
with the given accompanying parameters:

• list
Requests a space separated list of a computer system identification numbers
for the currently managed set of systems, where id zero always represents
the local computer system.
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• topology id
Requests a complete hardware topology description of the node/cache/core
hierarchy of the system which is identified by number ’id’.

• resources id
Requests a hardware topology description in HWLOC format (for debug-
ging).

• access idlist
Communicates to the server that the client can access and make use of the
computer resources for all systems in the given space separated list of system
identification numbers.

• local workload
Here workload is a number which represents an estimate for the approxi-
mate number of processor cores which could be used to process the local
workload.

• remote workload
Here workload is a number which represents an estimate for the approxi-
mate number of processor cores which could be used to non-locally process
workload.

• accept id cores
This is a response to a server grant message which acknowledges to the
server that the client will be using the cores on computer system ’id’. The
cores are identified by the space separated list of logical core numbers.

• return id cores
This communicates to the server a list of logical processor core numbers
which the client is no longer using on the system identified by ’id’. The list
is a space separated list of logical core numbers.

• quit
Asks the server to terminate the connection.

• help
Requests an overview of the available commands and their syntax.

• state
Requests an overview of the resources which have been granted to the client.

• shutdown
Requests the server to close all connections and stop execution.
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4.2.2 Messages from servers to clients

Servers can issue the following message types (here enclosed in double quotes)
with the given accompanying parameters:

• systems idlist
Gives a space separated list of machine identification numbers for the cur-
rently managed set of computer systems. Zero is used to represent the local
computer system.

• hardware id details
In response to a client topology request this gives a detailed list of informa-
tion about hardware details for computer system ’id’.

• grant id cores
This gives the receiving client a license to use the given processor cores on
the computer system identified by ’id’ to process the client workload. The
list is a space separated list of logical core numbers. A client must indicate
about each core whether it is going to use it (with an accept message) or not
(with a return message).

• revoke id cores
This requests to the client to stop using the given list of logical processor
core numbers. The client should acknowledge this request with one or more
return responses.

4.3 Energy consumption

In Analogy to per-node energy control we employ indirect techniques to improve
energy efficiency in multi-node and cluster environments. On each node we use
the techniques described in Section 3.2. For the multi-node system as a whole we
employ a similaroverflow strategy as between the cores of a single node. Addi-
tional nodes are dragged into the execution of an S-Net streaming network on an
on-demand basis as computational needs outgrow the already available computing
resources. Likewise, complete compute nodes are systematically vacated as com-
putational needs shrink during the execution of a program. This allows the orderly
shutdown of remote systems as soon as all data has been migrated away from such
a node.
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Chapter 5

Summary and Conclusion

This report gives a representative overview on research and development activities
in Work Package 3 during the fourth reporting period. As such it deliberately goes
beyond the concrete task W3d involving resource management servers.

During the (shorter) fourth reporting period we have made major achievements
in three distinct but interconnected areas:

1. repositioning hardware virtualisation within the ADVANCE technology stack
to the novel S-Net runtime system FRONT instead of two distinct levels for
runtime system and hardware virtualisation;

2. developing single-node resource management servers that allow us to ac-
tively manage the execution resources of a compute node and by the help of
the underlying operating system to save on energy consumption;

3. extending hardware virtualisation to multi-node systems with distributed mem-
ories and development of the associated multi-level resource management
servers.

The state-of-affairs in the above three focus areas is not the same. Our work on
the novel FRONT runtime system, as presented in Chapter 2 has reached maturity
and has been validated and evaluated quite intensely. We reported our work to the
wider scientific community at the International Symposium on High-Level Parallel
Programming (HLPP 2013) and published it in [3].

Our work on resource management servers had been delayed by the develop-
ments in the area of FRONT. Our single node solution, as discussed in Chapter 3,
has been fully implemented, but performance evaluation on the various ADVANCE

industrial use case and beyond is still outstanding. Instead we focused our re-
sources towards hardware virtualisation for distributed memory multi-node sys-
tems. We completed the design, as outlined in Chapter 4, but its implementation
has been delayed by the end of the ADVANCE project and the corresponding reduc-
tion of resources. Completing the implementation and experimental validation of
the approach remain future work.
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Our progress in the fourth reporting period was also significantly impeded by
two organisational issues. Our experienced junior researcher, Merijn Verstraaten,
was not available beyond the original end of the project in January 2013. We were
able to replace him by a (then) recent MSc graduate, Bert Gijsbers. Unfortunately,
he could not be hired until the re-allocation of resources between consortium part-
ners. This was only completed by mid-April, which left us with not more than
5.5 months for effective work. Under these circumstances the reported achieve-
ments are (in our opinion) remarkable and were only possible because Bert Gijs-
bers started working on alternative execution models for S-Net already during his
Master research project.
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